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ABSTRACT

Ever growing interest in microRNAs has immensely
populated the number of resources and research
papers devoted to the field and, as a result, it
becomes more and more demanding to find
miRNA data of interest. To mitigate this problem,
we created miRNEST database (http://mirnest.
amu.edu.pl), an integrative microRNAs resource.
In its updated version, named miRNEST 2.0, the
database is complemented with our extensive
miRNA predictions from deep sequencing libraries,
data from plant degradome analyses, results of pre-
miRNA classification with HuntMi and miRNA splice
sites information. We also added download and
upload options and improved the user interface to
make it easier to browse through miRNA records.

INTRODUCTION

microRNAs (miRNAs) are a class of negative regulators
of gene expression, widely identified in animals and plants.
In plants, miRNAs participate in different aspects of
growth and developmental processes, including lateral
root formation or transition from juvenile to adult vege-
tative phase (1). They are also key players in response to
stress conditions, like drought, low temperatures or
nitrogen deficiency (2). Animal miRNAs are believed to
regulate more than half of protein-coding genes and, like
in plants, are implicated in a number of biological
processes (3). Notably, multiple miRNAs have been
associated with diseases, like cancers or rheumatoid
arthritis (4).
The fact that miRNAs are key regulators of molecular

processes in a cell and that they could find multiple
applications in biotechnology, molecular biology or
medicine, motivated extensive development of methods
for their identification and study. The growing number
of miRNA studies allowed better understanding of their
biology and, consequently, led to accumulation of
miRNA databases. However, many of them are limited

to species of high interest, selected taxa or miRNAs
involved in some specific processes. For instance,
miRNeye (5) collects data about miRNA expression in
mouse eye, whereas GrapeMiRNA stores sequences
from V. vinifera (6). miRBase (7), on the other hand,
although accommodates data from a wide range of
species, contains only already published results. As a
result, a single universal repository is required so that
there was no necessity to browse through a number of
dispersed data sets to collect information related to
specific species or miRNA type.

Previously, we took up this challenge and we developed
miRNEST, a comprehensive online resource for plant,
animal and virus miRNAs. Using a comparative
approach, we identified 10 004 miRNA candidates in 221
animal and 199 plant species. As our goal was not only to
identify new miRNAs but also to develop a resource that
would integrate miRNA data scattered across literature
and databases, we also incorporated miRNA sequences
from three other databases and two publications.
Additionally, based on availability, we used data from
12 resources providing further annotation for miRNAs
from selected species. Here we present miRNEST 2.0, an
updated version of the database. In addition to 39 122
miRNAs from miRNEST 1.0 (10 004 from our EST
analysis and 29 118 from other resources), we predicted
18 043 pre-miRNAs using small RNA deep sequencing
data from 21 species. For miRNAs in 10 species, we
provided targets inferred from degradome libraries. We
also added miRNA splice sites information, HuntMi (8)
predictions and some database functionalities, including
download option. Taken together, miRNEST 2.0 is a
large and comprehensive resource of miRNA data that
bears distinct improvements over its previous version.

MATERIALS AND METHODS

miRNA prediction from sRNA deep sequencing data

For miRNA predictions we downloaded, from GEO
database (9), 171 small RNA deep sequencing libraries
from 8 plant and 13 animal species (Figure 1,
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Supplementary Table S1). Reads 19–26 bases long were
kept and we mapped them to corresponding plant or
animal genomes using Bowtie (10). In the mapping step,
no mismatches were allowed and reads mapping to >20
distinct locations were discarded. Mapped reads that were
19–22-nt long and with count� 5 were considered ‘poten-
tial mature miRNAs’. We retrieved their sequences from
genomes along with flanking genomic sequences of 150
bases in animals and 250 bases in plants, and then we
predicted secondary structures using hybrid-ss-min from
UNAFold package (11). We kept only sequences with
miRNA-like secondary structures: a stem loop-structure
with ‘potential mature miRNA’ located in a single
hairpin arm; no more than six mismatches and three
bulges (animals) or five mismatches and two bulges
(plants) between mature miRNA and the opposite
hairpin arm. If a stem-loop structure was surrounded by
additional nucleotides, the flanking regions were cutoff.
Subsequently, we checked similarity to non-coding
RNAs from RFAM (12) and proteins from UniProt

(UniProtKB/Swiss-Prot protein data set) (13) using
BLAST (14). Sequences showing similarity to RFAM
non-miRNAs with E< 1e-10 or UniProt proteins with
E< 1e-20 were discarded. After that we searched for
low-complexity regions using Dustmasker (14); sequences
bearing >60% of low-complexity regions were removed.
Finally, we made sure that there is a miRNA-like profile
of reads mapped to the hairpin. To achieve this we kept
only the hairpins where (i) ‘potential mature miRNA’ cor-
responded to the most abundant read in at least one
library, (ii) abundance of ‘potential mature miRNA’
constituted minimal 20% of total read counts in at least
one library and (iii) the total count of reads starting at 50

position of ‘potential mature miRNA’ was the maximal
one in at least one library.
Newly identified miRNA candidates were checked

against intronic sequences in corresponding species and se-
quences that fully overlapped with introns, with ‘potential
mature miRNA’ located no more than four bases away
from 50 or 30 intron end became mirtron candidates.

Figure 1. The pipeline used for large-scale miRNA discovery from sRNA deep-sequencing data.
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We supplemented these candidates with already published
predictions in mouse and human (15).

Degradome analysis

We downloaded 18 degradome libraries from GEO (9)
that corresponded to 10 plant species: Arabidopsis
thaliana, Glycine max, Hordeum vulgare, Malus domestica,
Medicago truncatula, Physcomitrella patens, Prunus
persica, Solanum lycopersicum, Triticum aestivum and
V. vinifera (Supplementary Table S2). Transcript
sequences (cDNAs) were downloaded from Ensembl
Plants (16), and mature miRNA sequences were retrieved
from miRNEST (17). Using PAREsnip (18), we searched
for miRNA targets evidenced by degradome reads.
We adjusted the program settings to look only for
category 0, 1 and 2 targets, i.e. only high confidence
candidates. For obtained candidates, we prepared
degradome reads alignment files and corresponding plots
for graphical representation of read mapping.

HuntMi predictions

HuntMi (8) is a machine learning tool for discrimination
between true and false pre-miRNAs in plants, animals
and viruses based on properties of pre-miRNA sequence
and its secondary structure. We used this tool with
default settings to better annotate pre-miRNAs stored
in miRNEST. For animal, plant and virus sequences,
different taxon-specific classifiers were used.

miRNA splice sites prediction

To infer miRNA splicing events from EST sequences, we
applied a strategy previously used in ERISdb (19). In the
first step, pre-miRNAs were searched against dbEST (20)
using Megablast (14). It was required that the identity was
97% or higher and that the EST sequence contained at
least 90% of known pre-miRNA sequence. The selected
ESTs were subsequently mapped to the corresponding
genome using Splign (21) with default settings. The align-
ments were finally checkedmanually to remove cases where
ESTs came from the antisense strand and to improve the
alignment in every case when splice site was broken because
of imperfection of EST alignment software. Additionally,
gene structures for 45 plant miRNAs were downloaded
from ERISdb (19). We also obtained gene structures
from RACE experiments in Populus trichocarpa (22), and
RNA-Seq-evidenced splice sites in V. vinifera (23).

RESULTS

In current version, miRNEST has been extensively
enlarged by results of small RNA deep sequencing
analyses. First of all, we predicted 18 043 pre-miRNAs in
21 plant and animal species, and because miRNAs were
often found independently in different sRNA libraries,
this corresponds to as many as 36 468 new records in the
database. In the search pipeline, we applied a number of
strict criteria from the literature (17,24,25). In all, 38.1% of
new sequences overlap with miRNAs already stored
in miRNEST 1.0, thus providing experimental support
for them (Supplementary Table S3). Moreover, as the

database encompasses multiple libraries per species, it
is possible to investigate isomiRs and changes in small
RNA counts in different tissues and conditions.
Although a similar functionality is available at miRBase
(7), the analyzed species and selected deep sequencing
libraries overlap only partly. Furthermore, for all
miRNAs stored in miRNEST, including new predictions,
we run classification analysis using HuntMi, which helped
in much better annotation. Altogether, 91.16% of
miRNEST sequences were considered true miRNAs,
including miRNEST EST predictions (77.85%),
miRNEST deep sequencing predictions (71.9%) and
miRNAs from external databases (96.91%). Relatively
high fraction of sequences recognized as true miRNAs in
case of external databases [miRBase (7), PMRD (26),
microPC (27)] might be due to the fact that this data
set largely overlaps with miRNAs used to train HuntMi.
Another aspect of deep sequencing analysis was identifi-
cation of degradome-evidenced miRNA targets in
10 plant species. As we wanted to achieve highest quality
results, only category 0, 1 and 2 candidates, as returned
by PAREsnip, were considered. This allowed us to
identify 2041 miRNA-target associations (Supplementary
Table S4).

Splicing in miRNA genes is an underestimated aspect
of miRNA biology. So far, there is only one repository
that stores miRNA splice sites information (19).
We incorporated that data into miRNEST 2.0 and add-
itionally performed splice site search in several species,
which allowed us to find 17 miRNAs with introns in
5 plant species. We also complemented that data
with miRNA gene structures from the literature
(P. trichocarpa, V. vinifera).

CONCLUSIONS

The current version of the miRNEST database contains
twice as many miRNA records as the version 1.0. Thanks
to the small RNA deep sequencing data analysis, almost
40% of previously predicted miRNAs is now validated by
the experimental data. Moreover, target predictions for
miRNAs from 10 species are supported by degradome
data. miRNEST 2.0 has also an updated user interface
and works faster than its predecessor. We added both
bulk data download and download available from
‘Browse’ page (for user-selected miRNAs). As we want
miRNEST to grow and be a truly comprehensive
miRNA resource, we also enabled upload option for
miRNA-associated data.

AVAILABILITY AND REQUIREMENTS

miRNEST is freely available at http://mirnest.amu.edu.pl.
Its previous version, miRNEST 1.0, can still be accessed
at http://lemur.amu.edu.pl/share/php/mirnest_1.0. The
database was constructed using Hypertext Markup
Language (HTML), Cascading Style Sheets (CSS), PHP
5.2.11 (http://www.php.net/) and MySQL 4.0.31 (http://
www.mysql.com/). pre-miRNA secondary structures are
drawn using Java lightweight applet VARNA (28),
which requires installation of Java plugin.
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SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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